ремкам.рф
ремонт автомобилей камаз
8-927-03-88-666

Система охлаждения

Главная / Справочник / Автомобили семейства МУСТАНГ / Система охлаждения

Система охлаждения

Система охлаждения предназначена для обеспечения оптимального теплового режима работы двигателя. Система охлаждения двигателя жидкостная, закрытого типа, с принудительной циркуляцией охлаждающей жидкости. К основным агрегатам и узлам системы охлаждения относятся: радиатор, вентилятор с электромагнитной или гидромуфтой привода, кожух вентилятора, корпус водяных каналов, водяной насос, термостаты, каналы и соединительные трубопроводы для прохода охлаждающей жидкости.

Схема системы охлаждения с соосным коленчатому валу вентилятором и электромагнитной муфтой привода вентилятора приведена на рис. 2-29.

Рис. 2-29. Схема системы охлаждения: 1 - расширительный бачок; 2 - пароотводящая трубка; 3 - трубка отвода жидкости из компрессора; 4 - канал выхода жидкости из правого ряда головок цилиндров; 5 - соединительный канал; 6 - канал выхода жидкости из левого ряда головок цилиндров; 7 - входная полость водяного насоса; 8 - водяной насос; 9 - канал входа жидкости в левый ряд гильз цилиндров; 10 - канал подвода жидкости в водяной насос из радиатора; 11 -выходная полость водяного насоса; 12 - соединительный канал; 13 - перепускной канал из водяной коробки на вход водяного насоса; 15 - канал отвода жидкости в теплообменник масляный; 16 - теплообменник масляный; 17 - водяная коробка; 18 - трубка подвода жидкости в компрессор; 19 - перепускная труба.

Во время работы двигателя циркуляция охлаждающей жидкости в системе создается водяным насосом 8. Охлаждающая жидкость из насоса 8 нагнетается в полость охлаждения левого ряда цилиндров через канал 9. Омывая наружные поверхности гильз цилиндров, охлаждающая жидкость через отверстия в верхних привалочных плоскостях блока цилиндров поступает в полости охлаждения головок цилиндров. Из головок цилиндров нагретая жидкость по каналам 4, 5 и 6 поступает в водяную коробку корпуса водяных каналов 17, из которой, в зависимости от температуры, направляется в радиатор или на вход насоса. Часть жидкости отводится по каналу 15 в масляный теплообменник 16, где происходит передача тепла от масла в охлаждающую жидкость. Из теплообменника охлаждающая жидкость направляется в водяную рубашку блока цилиндров в зоне расположения четвертого цилиндра.

Тепловой режим двигателя регулируется автоматически:

- двумя термостатами, которые управляют направлением потока жидкости в зависимости от температуры охлаждающей жидкости на выходе из двигателя. Номинальная температура охлаждающей жидкости на выходе из двигателя должна находиться в пределах 85...90 °С.

- муфтой привода вентилятора электромагнитной или гидровлической муфтой привода вентилятора в зависимости от температуры охлаждающей жидкости на входе в двигатель.

Корпус водяных каналов (рис. 2-29) отлит из чугунного сплава и закреплен болтами на переднем торце блока цилиндров.

В корпусе водяных каналов отлиты входная 7 и выходная 11 полости водяного насоса, соединительные каналы 5 и 12, канал 9, подводящий охлаждающую жидкость в блок цилиндров, каналы 4 и 6, отводящие охлаждающую жидкость из головок цилиндров, перепускной канал 13, канал 15 отвода в масляный теплообменник, полости водяной коробки 17 для установки термостатов, канал 10 подвода охлаждающей жидкости в водяной насос из радиатора.

Водяной насос (рис. 2-30) центробежного типа, установлен на корпусе водяных каналов. В корпус 1 запрессован радиальный двухрядный шарико-роликовый подшипник 13 с валиком. С обеих сторон торцы подшипника защищены резиновыми уплотнениями. Смазка в подшипник заложена заводом-изготовителем. Пополнение смазки в эксплуатации не требуется. Упорное кольцо 8 препятствует перемещению наружной обоймы подшипника в осевом направлении. На концах валика подшипника напрессованы крыльчатка 3 и шкив 7.

В корпусе насоса между подшипником и сальником выполнено два отверстия: нижнее и верхнее. Верхнее отверстие служит для вентиляции полости между подшипником и сальником, а нижнее - для контроля исправности торцового уплотнения.

Подтекание жидкости из нижнего отверстия свидетельствует о неисправности уплотнения. В эксплуатации оба отверстия должны быть чистыми, так как их закупорка приведет к выходу из строя подшипника.

Рис. 2-30. Насос водяной: 1 - корпус водяного насоса; 2 - кольцо упорное; 3 - крыльчатка водяного насоса; 6 - шкив водяного насоса; 8 - крышка защитная; 11 - сальник; 13 - подшипник с двусторонним уплотнением с валиком вместо внутреннего кольца.

Рис. 2-31. Насос водяной двигателя 740.11-240: 1 - шкив; 2 - болт; 3, 10 - шайбы; 4, 6 - подшипники; 5 - пресс-масленка; 7 - манжета; 8 - уплотнительное кольцо с обоймой; 9 - вал; 11 - колпачковая гайка; 12 - упорное кольцо; 13 - уплотнение (сальник); 14 - крыльчатка; 15 - корпус; 16 - пылеотражатель.

Муфта электромагнитная привода вентилятора (рис. 2-32) состоит из неподвижной электромагнитной катушки 10, закрепленной тремя болтами 11 на передней крышке блока цилиндров 13, шкива 9 привода генератора и водяного насоса, соединенного с валом отбора мощности 12 шестью болтами 4 через прокладку 5. На выступающей оси шкива 9 в подшипнике 2 свободно вращается ступица 3 с вентилятором 8. Между ступицей 3 и шкивом 9 установлен фрикционный диск 7, который крепится к ступице 3 болтами 6 через три пружинные пластины 15. Между торцами шкива 9 и фрикционного диска 7 тремя подпружиненными регулировочными болтами 1 устанавливается воздушный зазор 0,5...0,7 мм.

Рис. 2-32. Электромагнитная муфта привода вентилятора: 1 - болт регулировочный; 2 - подшипник; 3 - ступица вентилятора; 4 - болт крепления шкива; 5 - прокладка; 6 - болт крепления фрикционного диска; 7 - диск фрикционный; 8 - вентилятор; 9 - шкив привода генератора и водяного насоса; 10 - катушка электромагнитная; 11 - болт крепления электромагнитной катушки; 12 - вал отбора мощности; 13 - крышка передняя блока цилиндров; 14 - датчик включения вентилятора; 15 - пластина пружинная; А - вырез фрикционного диска; Б - резьбовое отверстие шкива.

В потоке охлаждающей жидкости на входе в двигатель установлен термобиметалический датчик 14 включения вентилятора.

Шкив 9 вращается постоянно с частотой вращения коленчатого вала. При повышении температуры охлаждающей жидкости до 90 °С происходит замыкание контактов термобиметалического датчика 14, подается напряжение на электромагнитную катушку 10 и под действием электромагнитных сил фрикционный диск 7 прижимается к шкиву 9 в результате, чего за счет сил трения происходит передача крутящего момента от шкива 9 к ступице 3 вентилятора.

При понижении температуры охлаждающей жидкости до 84 °С происходит размыкание контактов термобиметалического датчика 14, электромагнитная катушка 10 отключается от источника питания и фрикционный диск 7 под действием упругих сил пружинных пластин 15 возвращается в исходное положение, восстанавливая воздушный зазор между фрикционным диском 7 и шкивом 9.

В случае отказа в работе датчика 14 электромагнитная муфта может быть включена в постоянный режим работы клавишей на панели приборов изделия, а в случае неисправности электромагнитной катушки 10 фрикционный диск 7 может быть соединен со шкивом 9 механически - тремя болтами М8, для чего нужно совместить три выреза А, расположенные на наружном диаметре фрикционного диска 7, с резьбовыми отверстиями Б в шкиве 9 и ввернуть болты с пружинными и плоскими шайбами.

При преодолении глубокого брода вентилятор может быть отключен клавишей на панели приборов.

Работа вентилятора с постоянно включенной или соединенной болтами электромагнитной муфтой не должна быть длительной, так как это приведет к повышению расхода топлива и переохлаждению двигателя в зимнее время, поэтому при первой же возможности нужно заменить неисправные детали.

Девятилопастной вентилятор 8 диаметром 704 мм изготовлен из стеклонаполненного полиамида, ступица вентилятора 3 - металлическая.

Гидромуфта привода вентилятора (рис. 2-33) передает крутящий момент от коленчатого вала к вентилятору и гасит инерционные нагрузки, возникающие при резком изменении частоты вращения коленчатого вала. Гидромуфта расположена соосно с коленчатым валом.

Рис. 2-33. Гидромуфта привода вентилятора: 1 - передняя крышка; 2 - корпус подшипника; 3 - кожух; 4, 8,13, 19 - шариковые подшипники; 5 - трубка корпуса подшипника; 6 - ведущий вал; 7 - вал привода гидромуфты; 9 - ведомое колесо; 10 - ведущее колесо; 11 - шкив привода генератора и жидкостного насоса; 12 - вал шкива; 14 - упорная втулка; 15 - ступица вентилятора; 16 - ведомый вал; 17, 20 - манжеты; 18 - прокладка; 21 - маслоотражатель.

Передняя крышка 1 блока и корпус 2 подшипника соединены винтами и образуют полость, в которой установлена гидромуфта.

Ведущий вал 6 в сборе с кожухом 3, ведущее колесо 10, вал 12 и шкив 11, соединенные болтами, составляют ведущую часть гидромуфты, которая вращается в шариковых подшипниках 8 и 19. Ведущая часть гидромуфты приводится во вращение от коленчатого вала через шлицевой вал 7. Ведомое колесо 9 в сборе с валом 16, на котором закреплена ступица 15 вентилятора, составляют ведомую часть гидромуфты, вращающуюся в шариковых подшипниках 4 и 13. Гидромуфта уплотнена резиновыми манжетами 17 и 20.

На внутренних тороидальных поверхностях ведущего и ведомого колес отлиты радиальные лопатки. На ведущем колесе их 33, на ведомом 32. Межлопаточное пространство колес образует рабочую полость гидромуфты.

Крутящий момент с ведущего колеса 10 гидромуфты на ведомое 9 передается при заполнении рабочей полости маслом. Частота вращения ведомой части зависит от количества масла, поступающего в гидромуфту.

Включатель гидромуфты (рис. 2-34) управляет работой гидромуфты привода вентилятора. Через него масло поступает в гидромуфту. Включатель установлен в передней части двигателя на патрубке, подводящем охлаждающую жидкость к правому ряду цилиндров.

Включатель имеет три фиксированных положения и обеспечивает работу вентилятора в одном из режимов:

- автоматический - рычаг включателя установлен в положение "А" (рис. 2-35). При повышении температуры охлаждающей жидкости, омывающей термосиловой датчик 7 (рис. 2-34), начинается плавление активной массы, находящейся в его баллоне, которая, увеличиваясь в объеме, перемещает поршень датчика и шарик 8. При температуре жидкости 86-90°С шарик 8 открывает масляный канал в корпусе включателя. Масло из главной магистрали двигателя по каналам в корпусе включателя, блоке и его передней крышке, трубке 5 (рис. 2-33) и каналам в ведущем валу поступает в рабочую полость гидромуфты. При этом крутящий момент от коленчатого вала передается крыльчатке вентилятора. При температуре охлаждающей жидкости ниже 86 °С шарик под действием возвратной пружины перекрывает масляный канал в корпусе, и подача масла в гидромуфту прекращается. При этом находящееся в гидромуфте масло через отверстие в кожухе 3 сливается в картер двигателя и вентилятор отключается;

Рис. 2-34. Включатель гидромуфты: 1 - рычаг пробки; 2 - крышка; 3 - шарик; 4 - пробка; 5 - корпус включателя; 6 - термосиловой клапан; 7 - термосиловой датчик; 8 - шарик; 9 - уплотнительное кольцо; 10 - пружина.

Рис. 2-35. Положения включателя гидромуфты: А - автоматический режим; П - режим постоянного включения вентилятора; О - вентилятор отключен.

- вентилятор отключен - рычаг выключателя установлен в положение "О" (рис. 2-35); масло в гидромуфту не подается, при этом крыльчатка может вращаться с небольшой частотой под действием сил трения, возникающих при вращении подшипников и манжеты гидромуфты;

- вентилятор включен постоянно - рычаг включателя установлен в положение "П"; в этом случае масло в гидромуфту подается постоянно независимо от температуры охлаждающей жидкости, лопасти вентилятора вращаются постоянно с частотой, приблизительно равной частоте вращения коленчатого вала двигателя.

Основной режим работы гидромуфты автоматический.

При отказе включателя гидромуфты в автоматическом режиме (характеризуется перегревом двигателя) необходимо включить гидромуфту в постоянный режим (установить рычаг включателя в положение "П") и при первой возможности устранить неисправность включателя.

МУФТА ВЯЗКОСТНАЯ ПРИВОДА ВЕНТИЛЯТОРА И КОЛЬЦЕВОЙ ВЕНТИЛЯТОР приведены на рисунке 2-36.

На двигателе 740.50-360 применяется девятилопастной кольцевой вентилятор 1 диаметром 704 мм, изготовлен из стеклонаполненного полиамида, ступица 4 вентилятора - металлическая (рис. 2-36).

Для привода вентилятора применяется автоматически включаемая муфта вязкостного типа, которая крепится к ступице вентилятора. Принцип работы муфты основан на вязкостном трении жидкости в небольших зазорах между ведомой и ведущей частями муфты. В качестве рабочей жидкости используется силиконовая жидкость с высокой вязкостью.

Муфта неразборная и не требует технического обслуживания в эксплуатации.

Включение муфты происходит при повышении температуры воздуха на выходе из радиатора до 61...67 °С. Управляет работой муфты термобиметаллическая спираль 3.

Рис. 2-36. Кольцевой вентилятор с вязкостной муфтой привода: 1 - кольцевой вентилятор; 2 - вязкостная муфта; 3 - термобиметаллическая спираль; 4 - ступица вентилятора.

Радиатор медно-паяный, для повышения теплоотдачи охлаждающие ленты выполнены с жалюзийными просечками, крепится боковыми кронштейнами через резиновые подушки к лонжеронам рамы, а верхней тягой к объединительному воздушному коллектору.

Термостаты (рис. 2-37) позволяют ускорить прогрев холодного двигателя и поддерживать температуру охлаждающей жидкости не ниже 75 °С путем изменения ее расхода через радиатор. В водяной коробке 5 корпуса водяных каналов установлено параллельно два термостата с температурой начала открытия (80±2) °С.

При температуре охлаждающей жидкости ниже 80 °С, основной клапан 12 прижимается к седлу корпуса 14 пружиной 11 и перекрывает проход охлаждающей жидкости в радиатор. Перепускной клапан 6 открыт и соединяет водяную коробку корпуса водяных каналов по перепускному каналу 4 с входом водяного насоса.

Рис. 2-37. Термостаты: 1 - датчик указателя температуры; 2 - датчик сигнализатора аварийного перегрева; 3 - канал выхода жидкости из двигателя; 4 - канал перепуска жидкости на вход водяного насоса; 5 - коробка водяная; 6 - перепускной клапан; 7 - пружина перепускного клапана; 8 - резиновая вставка; 9 - наполнитель; 10 - баллон; 11 - пружина основного клапана; 12 - основной клапан; 13 - поршень; 14 - корпус; 15 - патрубок водяной; 16 - прокладка.

При температуре охлаждающей жидкости выше 80 °С, наполнитель 9, находящийся в баллоне 10, начинает плавиться, увеличиваясь в объеме. Наполнитель состоит из смеси 60 % церезина (нефтяного воска) и 40 % алюминиевой пудры. Давление от расширяющегося наполнителя через резиновую вставку 8 передается на поршень 13, который, выдавливаясь наружу, перемещает баллон 10 с основным клапаном 12, сжимая пружину 11. Между корпусом 14 и клапаном 12 открывается кольцевой проход для охлаждающей жидкости в радиатор. При температуре охлаждающей жидкости 93 °С происходит полное открытие термостата, клапан поднимается на высоту не менее 8,5 мм.

Одновременно с открытием основного клапана вместе с баллоном перемещается перепускной клапан 6, который перекрывает отверстие в водяной коробке корпуса водяных каналов, соединяющее ее с входом водяного насоса.

При понижении температуры охлаждающей жидкости до 80 °С и ниже, под действием пружин 7 и 11 происходит возврат клапанов 12 и 6 в исходное положение.

Для контроля температуры охлаждающей жидкости, на водяной коробке корпуса водяных каналов установлено два датчика температуры 1 и 2. Датчик 1 выдает показания текущего значения температуры на щиток приборов, датчик 2 служит сигнализатором перегрева охлаждающей жидкости. При повышении температуры до 98-104 °С на щитке приборов загорается контрольная лампа аварийного перегрева охлаждающей жидкости.

Расширительный бачок 1 (рис. 2-29) установлен на двигателе с правой стороны по ходу автомобиля. Расширительный бачок соединен перепускной трубой 19 с входной полостью водяного насоса 13, пароотводящей трубкой 2 с верхним бачком радиатора и с трубкой отвода жидкости из компрессора 3.

Расширительный бачок служит для компенсации изменения объема охлаждающей жидкости при ее расширении от нагрева, а также позволяет контролировать степень заполнения системы охлаждения и способствует удалению из нее воздуха и пара. Расширительный бачок изготовлен из полупрозрачного сополимера пропилена. На горловину бачка навинчивается пробка расширительного бачка (рис. 2-38) с клапанами впускным 6 (воздушным) и выпускным (паровым).

Рис. 2-38. Пробка расширительного бачка: 1 - корпус пробки; 2 - тарелка пружины выпускного клапана; 3 - пружина выпускного клапана; 4 - седло выпускного клапана; 5 - пружина клапана впускного; 6 - клапан впускной в сборе; 7 - прокладка выпускного клапана; 8 -блок клапанов.

Выпускной и впускной клапаны объединены в блок клапанов 8. Блок клапанов неразборный.

Выпускной клапан, нагруженный пружиной 3, поддерживает в системе охлаждения избыточное давление 65 кПа (0,65 кгс/см2), впускной клапан 6, нагруженный более слабой пружиной 5, препятствует созданию в системе разряжения при остывании двигателя.

Впускной клапан открывается и сообщает систему охлаждения с окружающей средой при разряжении в системе охлаждения 1-13 кПа (0,01-0,13 кгс/см2).

Заправка двигателя охлаждающей жидкостью производится через заливную горловину расширительного бачка. Перед заполнением системы охлаждения надо предварительно открыть кран системы отопления.

Для слива охлаждающей жидкости следует открыть сливные краны теплообменника и насосного агрегата предпускового подогревателя, отвернуть пробки на нижнем бачке радиатора и расширительного бачка.

ВНИМАНИЕ ! Не допускается открывать пробку расширительного бачка на горячем двигателе, так как при этом может произойти выброс горячей охлаждающей жидкости и пара из горловины расширительного бачка. Эксплуатация автомобиля без пробки расширительного бачка не допускается.

Рис. 2-39. Схема проверки натяжения ремней привода генератора и водяного насоса: 1 - шкив водяного насоса; 2 - ремень поликлиновой; 3 - шкив коленчатого вала; 4 - натяжной ролик; 5, 8, 11 - болты; 6, 7, 10 - гайки; 9 - шкив генератора. F=44,1 9 5 Н (4,5 9 0,5 кгс).

Рис. 2-39-1. Схема проверки натяжения ремней двигателя 740.11-240: 1 - регулировочный болт; 2 - болт крепления планки; 3 - генератор; 4 - ремень; 5 - шкив водяного насоса; 6 - шкив гидромуфты.

Регулировку натяжения (рис. 2-39) ремня поликлинового 2 привода генератора и водяного насоса для двигателей с расположением вентилятора по оси коленчатого вала выполнить следующим образом:

- ослабить болт 11 крепления задней лапы генератора, гайку 10 крепления передней лапы генератора, болт 8 крепления планки генератора, болт 5 крепления болта натяжного;

- перемещением гайки 6 обеспечить необходимое натяжение ремня; гайкой 7 зафиксировать положение генератора;

- затянуть болты 5, 8 и 11, затянуть гайку 10.

После регулировки проверить натяжение: -правильно натянутый ремень 2 при нажатии на середину наибольшей ветви усилием 44,1+5 Н (4,5+0,5 кгс) должен иметь прогиб 6...10 мм.

Регулировку натяжения ремней привода генератора и водяного насоса (рис. 2-39-1) выполнить следующим образом:

- ослабить гайки крепления передней и задней лап генератора, болт 2 (рис. 2-39-1) крепления планки и болт 1;

- переместив генератор, натянуть ремни;

- затянуть болт 1, болт 2 крепления планки, гайки крепления передней и задней лап генератора.

После регулировки должно быть проверено натяжение: правильно натянутый ремень при нажатии на середину наибольшей ветви с усилием 40 Н (4 кгс) должен иметь прогиб 15-22 мм.

Яндекс.Метрика